Toxicological Effects of Caco-2 Cells Following Short-Term and Long-Term Exposure to Ag Nanoparticles
نویسندگان
چکیده
Extensive utilization increases the exposure of humans to Ag nanoparticles (NPs) via the oral pathway. To comprehensively address the action of Ag NPs to the gastrointestinal systems in real situations, i.e., the long-term low-dose exposure, we evaluated and compared the toxicity of three Ag NPs (20-30 nm with different surface coatings) to the human intestine cell Caco-2 after 1-day and 21-day exposures, using various biological assays. In both the short- and long-term exposures, the variety of surface coating predominated the toxicity of Ag NPs in a descending order of citrate-coated Ag NP (Ag-CIT), bare Ag NP (Ag-B), and poly (N-vinyl-2-pyrrolidone)-coated Ag NP (Ag-PVP). The short-term exposure induced cell growth inhibition and death. The cell viability loss appeared after cells were exposed to 0.7 μg/mL Ag-CIT, 0.9 μg/mL Ag-B or >1.0 μg/mL Ag-PVP for 24 h. The short-term and higher-dose exposure also induced reactive oxygen species (ROS) generation, mitochondrial damage, cell membrane leakage, apoptosis, and inflammation (IL-8 level). The long-term exposure only inhibited the cell proliferation. After 21-day exposure to 0.4 μg/mL Ag-CIT, the cell viability dropped to less than 50%, while cells exposed to 0.5 μg/mL Ag-PVP remained normal as the control. Generally, 0.3 μg/mL is the non-toxic dose for the long-term exposure of Caco-2 cells to Ag NPs in this study. However, cells presented inflammation after exposure to Ag NPs with the non-toxic dose in the long-term exposure.
منابع مشابه
Influence of Copper Oxide Nanoparticle on Hematology and Plasma Biochemistry of Caspian Trout (Salmo trutta caspius), Following Acute and Chronic Exposure
The Caspian trout is an endangered and quite vulnerable fish, considered for a natural protection program in the southern area of the Caspian Sea. Copper oxide nanoparticles (CuO-NPs) are toxic substances, which induce oxidative stress, not to mention other pathophysiological states. The toxicity of nanoparticles on fish needs more characterization for short- and long-term effects. Thus, the p...
متن کاملInfluence of Copper Oxide Nanoparticle on Hematology and Plasma Biochemistry of Caspian Trout (Salmo trutta caspius), Following Acute and Chronic Exposure
The Caspian trout is an endangered and quite vulnerable fish, considered for a natural protection program in the southern area of the Caspian Sea. Copper oxide nanoparticles (CuO-NPs) are toxic substances, which induce oxidative stress, not to mention other pathophysiological states. The toxicity of nanoparticles on fish needs more characterization for short- and long-term effects. Thus, the p...
متن کاملAlterations in the Corpuscles of Stannius of Euphorbia royleana Treated Catfish, Heteropneustes fossilis
Background: We aimed to evaluate effect of Euphorbia royleana exposure on histocytology of corpuscles of Stannius in fish, Heteropneustes fossilis. Methods: Fish were subjected to 2.47 mg/L and 0.618 mg/L of E. royleana for short-term and long-term exposure, respectively. Blood samples were collected on 24, 48, 72 and 96 h in short-term and after 7, 14, 21, and 28 d in long-term experiment a...
متن کاملToxicological Assessment of Solanum Erianthum Extracts in Albino Rats: Haematological, biochemical and histopathological findings
Background: Solanum erianthum leaves extract has been used to treat sexually-transmitted diseases, malaria, and leprosy. This study assessed the toxicity and safety of S. erianthum extract in rats. Methods: Treatment with 250, 500 or 750 mg/kg of the aqueous, ethanolic and methanolic extracts in the rats had different effects on the biochemical activities of the liver, heart and kidneys, and ...
متن کاملEffects of Short-Term Exposure to Sublethal Concentrations of Silver Nanoparticles on Histopathology and Electron Microscope Ultrastructure of Zebrafish (Danio Rerio) Gills
Background: The increasing use of nanomaterials and nanoproducts has increased the possibility of contamination of the environment, which may have adverse effects on different organisms. The aim of this study was to evaluate the effects of silver nanoparticles on histopathology and gill ultrastructure of zebrafish (Danio rerio) under laboratory conditions. Methods: Zebrafish were exposed to ...
متن کامل